Copied to
clipboard

G = C7×C8.C22order 224 = 25·7

Direct product of C7 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C8.C22, Q162C14, C28.64D4, SD162C14, M4(2)⋊2C14, C28.49C23, C56.13C22, C8.(C2×C14), (C2×Q8)⋊4C14, (C7×Q16)⋊6C2, C4.15(C7×D4), (Q8×C14)⋊11C2, (C7×SD16)⋊6C2, C4○D4.2C14, D4.3(C2×C14), (C2×C14).25D4, C2.16(D4×C14), C14.79(C2×D4), Q8.3(C2×C14), C22.6(C7×D4), (C7×M4(2))⋊6C2, C4.6(C22×C14), (C2×C28).70C22, (C7×D4).13C22, (C7×Q8).14C22, (C7×C4○D4).5C2, (C2×C4).11(C2×C14), SmallGroup(224,172)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C8.C22
C1C2C4C28C7×D4C7×SD16 — C7×C8.C22
C1C2C4 — C7×C8.C22
C1C14C2×C28 — C7×C8.C22

Generators and relations for C7×C8.C22
 G = < a,b,c,d | a7=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >

Subgroups: 84 in 60 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C14, C14, M4(2), SD16, Q16, C2×Q8, C4○D4, C28, C28, C2×C14, C2×C14, C8.C22, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C7×Q8, C7×M4(2), C7×SD16, C7×Q16, Q8×C14, C7×C4○D4, C7×C8.C22
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C8.C22, C7×D4, C22×C14, D4×C14, C7×C8.C22

Smallest permutation representation of C7×C8.C22
On 112 points
Generators in S112
(1 87 42 28 93 79 34)(2 88 43 29 94 80 35)(3 81 44 30 95 73 36)(4 82 45 31 96 74 37)(5 83 46 32 89 75 38)(6 84 47 25 90 76 39)(7 85 48 26 91 77 40)(8 86 41 27 92 78 33)(9 111 21 52 69 103 57)(10 112 22 53 70 104 58)(11 105 23 54 71 97 59)(12 106 24 55 72 98 60)(13 107 17 56 65 99 61)(14 108 18 49 66 100 62)(15 109 19 50 67 101 63)(16 110 20 51 68 102 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)(25 27)(26 30)(29 31)(33 39)(35 37)(36 40)(41 47)(43 45)(44 48)(49 51)(50 54)(53 55)(58 60)(59 63)(62 64)(66 68)(67 71)(70 72)(73 77)(74 80)(76 78)(81 85)(82 88)(84 86)(90 92)(91 95)(94 96)(97 101)(98 104)(100 102)(105 109)(106 112)(108 110)
(1 97)(2 102)(3 99)(4 104)(5 101)(6 98)(7 103)(8 100)(9 48)(10 45)(11 42)(12 47)(13 44)(14 41)(15 46)(16 43)(17 95)(18 92)(19 89)(20 94)(21 91)(22 96)(23 93)(24 90)(25 106)(26 111)(27 108)(28 105)(29 110)(30 107)(31 112)(32 109)(33 66)(34 71)(35 68)(36 65)(37 70)(38 67)(39 72)(40 69)(49 78)(50 75)(51 80)(52 77)(53 74)(54 79)(55 76)(56 73)(57 85)(58 82)(59 87)(60 84)(61 81)(62 86)(63 83)(64 88)

G:=sub<Sym(112)| (1,87,42,28,93,79,34)(2,88,43,29,94,80,35)(3,81,44,30,95,73,36)(4,82,45,31,96,74,37)(5,83,46,32,89,75,38)(6,84,47,25,90,76,39)(7,85,48,26,91,77,40)(8,86,41,27,92,78,33)(9,111,21,52,69,103,57)(10,112,22,53,70,104,58)(11,105,23,54,71,97,59)(12,106,24,55,72,98,60)(13,107,17,56,65,99,61)(14,108,18,49,66,100,62)(15,109,19,50,67,101,63)(16,110,20,51,68,102,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,27)(26,30)(29,31)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,51)(50,54)(53,55)(58,60)(59,63)(62,64)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78)(81,85)(82,88)(84,86)(90,92)(91,95)(94,96)(97,101)(98,104)(100,102)(105,109)(106,112)(108,110), (1,97)(2,102)(3,99)(4,104)(5,101)(6,98)(7,103)(8,100)(9,48)(10,45)(11,42)(12,47)(13,44)(14,41)(15,46)(16,43)(17,95)(18,92)(19,89)(20,94)(21,91)(22,96)(23,93)(24,90)(25,106)(26,111)(27,108)(28,105)(29,110)(30,107)(31,112)(32,109)(33,66)(34,71)(35,68)(36,65)(37,70)(38,67)(39,72)(40,69)(49,78)(50,75)(51,80)(52,77)(53,74)(54,79)(55,76)(56,73)(57,85)(58,82)(59,87)(60,84)(61,81)(62,86)(63,83)(64,88)>;

G:=Group( (1,87,42,28,93,79,34)(2,88,43,29,94,80,35)(3,81,44,30,95,73,36)(4,82,45,31,96,74,37)(5,83,46,32,89,75,38)(6,84,47,25,90,76,39)(7,85,48,26,91,77,40)(8,86,41,27,92,78,33)(9,111,21,52,69,103,57)(10,112,22,53,70,104,58)(11,105,23,54,71,97,59)(12,106,24,55,72,98,60)(13,107,17,56,65,99,61)(14,108,18,49,66,100,62)(15,109,19,50,67,101,63)(16,110,20,51,68,102,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)(25,27)(26,30)(29,31)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,51)(50,54)(53,55)(58,60)(59,63)(62,64)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78)(81,85)(82,88)(84,86)(90,92)(91,95)(94,96)(97,101)(98,104)(100,102)(105,109)(106,112)(108,110), (1,97)(2,102)(3,99)(4,104)(5,101)(6,98)(7,103)(8,100)(9,48)(10,45)(11,42)(12,47)(13,44)(14,41)(15,46)(16,43)(17,95)(18,92)(19,89)(20,94)(21,91)(22,96)(23,93)(24,90)(25,106)(26,111)(27,108)(28,105)(29,110)(30,107)(31,112)(32,109)(33,66)(34,71)(35,68)(36,65)(37,70)(38,67)(39,72)(40,69)(49,78)(50,75)(51,80)(52,77)(53,74)(54,79)(55,76)(56,73)(57,85)(58,82)(59,87)(60,84)(61,81)(62,86)(63,83)(64,88) );

G=PermutationGroup([[(1,87,42,28,93,79,34),(2,88,43,29,94,80,35),(3,81,44,30,95,73,36),(4,82,45,31,96,74,37),(5,83,46,32,89,75,38),(6,84,47,25,90,76,39),(7,85,48,26,91,77,40),(8,86,41,27,92,78,33),(9,111,21,52,69,103,57),(10,112,22,53,70,104,58),(11,105,23,54,71,97,59),(12,106,24,55,72,98,60),(13,107,17,56,65,99,61),(14,108,18,49,66,100,62),(15,109,19,50,67,101,63),(16,110,20,51,68,102,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24),(25,27),(26,30),(29,31),(33,39),(35,37),(36,40),(41,47),(43,45),(44,48),(49,51),(50,54),(53,55),(58,60),(59,63),(62,64),(66,68),(67,71),(70,72),(73,77),(74,80),(76,78),(81,85),(82,88),(84,86),(90,92),(91,95),(94,96),(97,101),(98,104),(100,102),(105,109),(106,112),(108,110)], [(1,97),(2,102),(3,99),(4,104),(5,101),(6,98),(7,103),(8,100),(9,48),(10,45),(11,42),(12,47),(13,44),(14,41),(15,46),(16,43),(17,95),(18,92),(19,89),(20,94),(21,91),(22,96),(23,93),(24,90),(25,106),(26,111),(27,108),(28,105),(29,110),(30,107),(31,112),(32,109),(33,66),(34,71),(35,68),(36,65),(37,70),(38,67),(39,72),(40,69),(49,78),(50,75),(51,80),(52,77),(53,74),(54,79),(55,76),(56,73),(57,85),(58,82),(59,87),(60,84),(61,81),(62,86),(63,83),(64,88)]])

C7×C8.C22 is a maximal subgroup of   D28.39D4  M4(2).15D14  M4(2).16D14  D28.40D4  D56⋊C22  C56.C23  D28.44D4

77 conjugacy classes

class 1 2A2B2C4A4B4C4D4E7A···7F8A8B14A···14F14G···14L14M···14R28A···28L28M···28AD56A···56L
order1222444447···78814···1414···1414···1428···2828···2856···56
size1124224441···1441···12···24···42···24···44···4

77 irreducible representations

dim111111111111222244
type++++++++-
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4C7×D4C7×D4C8.C22C7×C8.C22
kernelC7×C8.C22C7×M4(2)C7×SD16C7×Q16Q8×C14C7×C4○D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C28C2×C14C4C22C7C1
# reps11221166121266116616

Matrix representation of C7×C8.C22 in GL4(𝔽113) generated by

16000
01600
00160
00016
,
1101011109
3012104
920104101
21211212
,
1110
011200
001120
0001
,
1000
0001
111112112112
0100
G:=sub<GL(4,GF(113))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[110,3,92,21,101,0,0,21,110,12,104,12,9,104,101,12],[1,0,0,0,1,112,0,0,1,0,112,0,0,0,0,1],[1,0,111,0,0,0,112,1,0,0,112,0,0,1,112,0] >;

C7×C8.C22 in GAP, Magma, Sage, TeX

C_7\times C_8.C_2^2
% in TeX

G:=Group("C7xC8.C2^2");
// GroupNames label

G:=SmallGroup(224,172);
// by ID

G=gap.SmallGroup(224,172);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,679,2090,5044,2530,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽